K=z}

L, _pml-mi
V2 TOOR Ty 24 2mg”

2
z_'[1-§<ﬂ) }=—0.88 )
2 mg

For l,=—3m,?, we get

¢ _19m,® - 16my°
VZ T 11m,2 + 16my®

. 2
z_[1-—1-5-<1"—”> ]:—0.85 .
8 Mg,
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The recalculation of ¢ according to (29) is only
slightly influenced by introducing the dependence
onl,.

Our purpose has been to provide an example of
symmetry breaking which admits Z, #0. The theo-
retical result from 77 scattering,® I,~—-3m,?, has
been given a quantitative interpretation in terms
of small departures from the case 7,=0. It re-
mains to be seen whether similar effects in other
processes are too small to provide further tests
of Eq. (24).

*Work supported in part by the National Science Foun-
dation. ’
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ces; repeated, these are summed from 1 to 3. Greek
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2The Clebsch-Gordan coefficients ¢ sir are symmetric
in jk and satisfy £;;;=0, &;;,¢x;r=0,x, and, summing
J=1to 5,
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3There is experimental evidence for this: L. J. Gutay,
F. T. Meiere, and J. H. Scharenguivel, Phys. Rev. Let-
ters 23, 431 (1969); M. G. Olsson and L. Turner, zbid.
20, 1127(1968).

M. Gell-Mann, Phys. Rev. 125, 1067 (1962).

M. Gell-Mann, R. J. Oakes, and B. Renner, Phys.
Rev. 175, 2195 (1968). We refer to this as GOR.

8S. C. Prasad and J. J. Brehm, Phys. Rev. D 6, 3216
(1972). -

'3. J. Brehm, Nucl. Phys. B34, 269 (1971). The nota-
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We show that if an amplitude has certain positivity properties as would be given by an optical
theorem and if it obeys a dispersion relation with a known number of subtractions, then the
amplitude can be uniquely and explicitly found from its modulus on the cuts and a known num-
ber of additional parameters. Applying this result to forward polarized Compton scattering,
we find that the necessary additional parameters are fixed by low-energy theorems in terms
of the static electromagnetic properties of the target.

Analyticity has proven to be one of the most use-
ful tools of recent high-energy physics. With vary-
ing degrees of rigor, theorists have shown scatter-
ing amplitudes to be analytic functions of particle
energies except for singularities which are often
related to other physical processes. Dispersion
relations then correlate these processes via con-
tour integrals.

Recent interest has appeared on the constraints
analyticity imposes on amplitudes whose modulus
is known on the branch cuts in the complex plane.*™
In general such constraints take the form of in-
equalities. Okubo* has recently summarized sev-

eral applications of these constraints and briefly
mentioned some conditions under which they be-
come equalities. One particularly interesting re-
sult of experimental relevance is a set of bounds
on the pion electromagnetic radius in terms of the
experimentally measured modulus of the pion elec-
tromagnetic form factor on its cut.!*®

In this paper we wish to add some more input and
thus show that certain amplitudes can be explicitly
constructed from their magnitude on the cuts and
a small number of additional parameters. We
study forward scattering amplitudes, which satisfy
certain positivity conditions, and we impose sub-
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traction assumptions on the usual dispersion rela-
tions. We will finally apply our results to the case
of Compton scattering from a spin—% target. In
this case low-energy theorems uniquely fix the
additional parameters needed to determine the am-
plitudes. We demonstrate that both independent
amplitudes are uniquely given in terms of the po-
larized forward differential cross sections above
the inelastic threshold and the static electromag-
netic properties of the target.

The essential reason that we can obtain these
stronger results is that positivity coupled with sub-
traction assumptions strongly limits the number of
zeros of the amplitude in the complex plane. Un-
certainties in the positions and number of zeros
limit the determination of an amplitude from its
modulus on its cuts. However, Jin and Martin®
have shown that the number of zeros can be lim-
ited. Thus to locate them requires only a limited
amount of additional information. In the case of
Compton scattering, this additional information
comes from low-energy theorems.

Let us begin by listing the assumptions that we
impose on our amplitude. We consider a function
f(v) which is a real analytic function in the com-
plex v plane except for cuts from y, to © and —
to —v,. We do not allow f(v) to have essential sin-
gularities on the cuts. We make the assumption
that f (v) satisfies a twice-subtracted dispersion
relation

2 (edv'Imf (v’ +i€)

f(V)=f(0)+Vf’(0)+"_ VIZ(VI_V)

v
T Ve

1

We will discuss later the case of a different num-
ber of subtractions.

The only other assumption which we shall need
is positivity. We assume that we are discussing a
forward elastic scattering amplitude with an opti-
cal theorem

Imf(v+i€)xon(v)=0 for v>y,, (2)

where o,(v) is the total cross section for the par-
ticles initiating the reaction described by f(v).

The proportionality constant implied by Eq. (2) can
in general be taken to be positive so that

Imf(v +i€)=0 for v>v,. 3)

Now if we take v +Z€ to —v — i€ we obtain the elas-
tic amplitude for the antiparticle of the original
beam on the same target. This also obeys an opti-
cal theorem implying

Imf(~-v-i€)=0 for v>y,, (4)

or, since f(v) is a real analytic function,

Imf(v +i€)<0 for v<-vy,. (5)

Equations (3) and (5) represent the constraint of
positivity that we assume f(v) satisfies.

Having presented our assumptions on f (v), we
now attack the problem of what can be said about
the amplitude from knowledge of its modulus on
the cuts. We therefore take as given |f(v)| for v
=y, and v s -y, To proceed we introduce the aux-
iliary function f(v) defined explicitly in terms of
|£(»)| on the cuts by

2 _ ,2\1/2
fo(V)=eXp<(Vo ‘”V )
- Avei-vRe)
Xj.—oo(ulz - VOZ)I/Z(V' - V) lnlf(v ),> )
where (6)
s

(7

_ 41, x=0
e(x)—ZB(x)—l—{_l’ %<0,

and we choose the branch of the square-root func-
tion with positive real part. Note that the integral
in Eq. (6) is convergent since f(v) is polynomially
bounded and because we have assumed it has no
essential singularities on the cut.

The function f,(v) has several interesting proper-
ties' which may be verified directly from the defini-
tion. First, it is a real analytic function in the v
plane except for cuts from v, to © and —= to —y;
this is the same cut structure as possessed by
f(v). Second, the modulus of f,(v) equals the mod-
ulus of f(v) on these cuts. Third, f,(v) has no
zeros in the complex plane away from the cuts. It
is this third condition that assures us that f (v)
need not be identical with f(v).

In general f(v) may have zeros in the complex v
plane. For every v; which represents a zero of
f(v) away from its cuts, we define a function

(v VY2 (0 + VY2 = (v + 1) Y2 (v, — V)12
(Vo = VM2 (o + V)2 4+ (v + 1, )21y — v)H2°

(8)

Z(V, Vi)

We pick the value of the square-root function with
positive real part. If —y,<v; <v, then Z(v,v,) is
a real analytic function in the cut v plane with a
zero at v=v; and | Z(v, v;)|=1 on the cuts. If v, is
complex we know that since f(v) is a real analytic
function it has another zero at v }. In this case the
product Z(v, v;,)Z(v, v }) has zeros at v; and v ¥, is
a real analytic function in the cut v plane, and has
unit magnitude on the cuts.
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Removing a factor of Z(v, v;) for each zero f(v),
we define a function D(v) by

£ =D<v><n 2, V¢)>fo(V) . ©)
i

The function D(v) has the following properties:
(a) it is analytic in the cut » plane, (b) it has no
zeros, (c) it has unit magnitude on the cuts,

(d) it has no essential singularities on the cuts,
and (e) it is polynomially bounded at infinity.
These conditions restrict D(v) to be of the form

D(v)=zexp[-K (v — v?)'?], (10)

where K= 0. Without using positivity, we have
now found the most general form for f(v) in terms
of its modulus on the cuts:

F) =i({l Z(, v,))fo<u) exp[-K (v,? - v?)2].
(11)

Let us now add our assumption of positivity. The
first observation is that if K does not vanish in Eq.
(11), then f(v) falls faster than any power of v as
v—1io, It can be readily verified from the original
dispersion relation that positivity rules out such
a behavior.5® We can thus safely set K=0. This
result is independent of the number of subtractions
in the dispersion relation.

Jin and Martin® have discussed the constraints
that positivity imposes on the number of zeros in
an amplitude. We will rederive here the result
that positivity coupled with the assumption of only
two subtractions allows f(v) to have at most two
zeros. Once we know that f(v) can only have two
zeros, two additional statements about f(v) will fix
their positions.

To demonstrate that f(v) has at most two zeros
away from the cuts, we temporarily assume that
there are at least three and we will show a contra-
diction. If there are three zeros, we can write a
dispersion relation for f(v) subtracted at these
points and obtain

(v=v)W=1)(v-v,)

f= -
% ° dv’'Imf (v’ +ie)
w (W =V =)0 =)V =)
(12)
Taking v to infinity we find
f"’)“zn‘z‘f.w(v'—v‘f)y(,vl'nifvg(ll'—u3)' (13)

A v? behavior at infinity would not allow an only
twice-subtracted dispersion relation as assumed
in Eq. (1); therefore, we must have

® av'Imf (v’ +i€) _
]-ao(V'-Vl)(V’-uz)(u’—us)‘O' (14)

If all three roots lie on the real axis between —v,
and +v,, the integrand in Eq. (14) is positive so the
equation is impossible. This means that at least
one of the three zeros, take it to be v;,, must be
complex. If it is complex, another zero occurs at
vk Take v,=v¥and rewrite Eq. (14):

f ° dv’'Imf(v’')

L T e A T

(v -v¥=0. (15)

If v, is real and between —v, and v, the integrand
is positive and again we have a contradiction. If
v, is complex, by taking combinations of the real
and imaginary part of (15) we obtain

j‘” dv'Imf(v')v’ 0. (16)

7 2,7 2=
el V! =020 =yl

Again this is a positive quantity so we have a con-
tradiction. The result of this is that f (v) can have
at most two zeros away from its cuts. We will dis-
cuss later what happens when the number of sub-
tractions is changed.

Given that f (v) has at most two zeros, we can
write’

FW)=2Z(v, v))Z(v, v,) fo(V). 17)

Note that the case where f(v) has one or no zeros
is actually included in Eq. (17) if we allow v, to go
to v, since Z(v, +v,) =¥1.

We can now show that the positive sign must be
taken in Eq. (17). To do this first write a disper-
sion relation for f(v) subtracted at v, and v,:
(v=v)(v-1,)

s

fw)=

xf-‘:( dv'Imf (v’ +ie) (18)

v =)' =y =)’
This implies

sO=2 [

V(W =)V =-,)]

(19)

Now for either complex roots or real roots be-
tween -y, and v, we have

W' =-v)w' -v,)=0

on the cuts. This means that f(0) has the same
sign as v,v,. Observing that Z(0, v,)Z(0, v,) has the
same sign as v,V,, and noting from the definition
that £,(0)> 0, we see that in Eq. (17) we must al-
ways choose the positive sign:

FW)=Z(v, v,) Z(v, v,) fo(v) . (20)

If £(0) happens to vanish, this argument must be
modified slightly; however, the result remains the



3536 MICHAEL CREUTZ 6

same.
We now have an explicit expression for f(v) in

terms of its modulus on the cuts and two additional

parameters. These parameters could be deter-

]

mined by additional information on f(v). For ex-
ample, if f(0) and f/(0) are both known, we can
solve for v, and v,. Elementary algebra gives the
following result:

v <2Vo(f'fo SN o =F2 2 2(F o = VLo (f fo = £/ F ) = folSo f)"']""'), 1)

(fo f)4+4V02(f’fo "fo'f)2

where f =£(0), f'=f'(0), fo=£;(0), and f,’ =f,'(0).
The positive sign in front of the square-root term
gives one zero while the minus sign gives the
other. )

By combining Egs. (20), (21), (6), and (8), we
clearly obtain an explicit expression for f(v) in
terms of its modulus on the cuts and the subtrac-
tion constants of the dispersion relation. This is,
of course, different input than used in the usual
dispersion relation, which determines the ampli-
tude in terms of its imaginary part on the cuts and
the subtraction constants. We must emphasize,
however, that positivity was crucial to our obtain-
ing a unique result.

We now list several comments on our result and
its applications.

(i) The number of subtractions in the dispersion
relation is closely related to the number of zeros
that the function may have. The general result of
Jin and Martin® is that if there are 2% or 2n -1 sub-
tractions, the amplitude can have at most 2z zeros.
Note that an unsubtracted dispersion relation al-
lows for no zeros at all away from the cuts; con-
sequently, an unsubtracted amplitude satisfying
positivity is uniquely determined by its modulus on
the cuts.

(ii) In many applications of physical interest,
such as pion-nucleon scattering, the amplitudes
have poles on the real axis between the cuts. Such
poles can be accommodated in this discussion by
replacing f(v) by I1,;(v = v;)f (v), where v, is the
position of the ’th pole. It is important to note,
however, that]];(v-v;)f(v) may require more
subtractions than f(v) and therefore more zeros
are allowed. In general, each additional pole al-
lows one more zero to be present. Knowledge of
the residue of the pole provides an additional con-
straint on the locations of zeros. Note that for an
odd number of poles the discussion of positivity on
the left-hand cut is modified.

(iii) If f(v) is known to be an even function of v,
then f/(0) =0 automatically and we need only know
f(0) in addition to the modulus on the cuts in order
to determine f(v). An even function has at most a
pair of zeros at +v,. Okubo* has pointed out that if
f(v,) is negative and f(v) is even, then it can have

T

no zeros at all if it satisfies our other assump-
tions. In this case it is uniquely determined by
only its modulus on the cuts.

(iv) There are constraints which f(0) and f'(0)
must satisfy in order for a solution for f(v) to ex-
ist at all. These constraints must be satisfied in~
dependent of the positivity assumption. They are
an obvious generalization of the bounds of Refs. 1,
3, and 4 to functions with two cuts. In the notation
of Eq. (21), we must have

| F(0)] =< £,(0) (22)
and

S el A A et il 23)
JAETAVITAS R A TATIV AN

Note that if f,=| f|, then f’ is uniquely determined.
Let us note that both equations (22) and (23) must
remain true if f;, and f,’ are calculated from an up-
per bound to | f(v)| rather than | f(v)] itself.

(v) Although we have used positivity, Eq. (20)
does not manifestly exhibit it. For this reason we
feel that this constraint has not been exhausted.
Indeed, positivity should impose further conditions
on the allowed behavior of | f(v)| on its cuts. We
will discuss this no further here.

(vi) As we have stated the problem, it is direct-
ly applicable to forward Compton scattering. Fol-
lowing Damashek and Gilman,” we note that there
are two independent amplitudes describing forward
Compton scattering from a spin-3 target. Calling
the laboratory photon energy v, we write the am-
plitude for scattering off the target with both pho-
ton and target spins parallel to each other and par-
allel to the beam direction as

L) =fi(v) =£,(1), (24)
while when the spins are antiparallel to each other
we have

o) =f,(0) +1,(v) . (25)
Our normalization is such that

ﬂ
a 1ab,0°

We work here to lowest nonvanishing order in the

=|f)*. (26)
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electromagnetic charge. Both f;(v) and f,(v) can be
continued as analytic functions into the complex v
plane, f,(v) being an even function of v and f,(v)
odd. Thus f,(v) and f,(v) can also be continued so
that f,(~v) =f,(v). Positivity tells us that
Imf,(v+i€)= 0 and Imf,(v+i€)=0 for v=y,
=inelastic threshold. Usual Regge theory tells us
that f,(v) satisfies a twice-subtracted dispersion
relation. All of this discussion indicates that f,(v)
satisfies all the conditions we imposed on f(v) at
the beginning of this paper. Therefore f,(v) can be
constructed from | f,(v)| on the cuts, f,(0), and
£,'(0). Of course, Eq. (26) gives | f,(v)| on both
cuts in terms of differential cross sections for po-
larized photons on a polarized target above the in-
elastic threshold.

A remarkable fact about Compton scattering is
that £,(0) and £,/ (0) are both determined by low-
energy theorems,

£+(0)=£,(0)

== (_MJ—WQ—z; (27)
£’ (0)=~£,'(0)
=+%AI/§—Z, ’ (28)

where @ =535, @ is the target charge in units of the
electron charge, K is the target anomalous mag-
netic moment, and M is the target mass. Thus our
result is that f,(v), and therefore both f;(v) and
f>(v), can be explicitly constructed from knowledge
of polarized differential cross sections and static
electromagnetic properties of the target.

We remark here that knowledge of | fl(u)] on the
cuts determines f;(v). This amplitude satisfies’
our assumptions and f,(0) is given in Eq. (27) while
f.'(0) =0 because f,(v) is even. However, know-
ledge of | f,(v)| on the cuts is rot sufficient to de-
termine f,(v). This is because f,(v) does not satis-
fy a positivity constraint. Indeed there is no the-
oretical limit on the number of zeros in f,(v).

(vii) The utility of our result for the experimen-
tal determination of amplitudes is not entirely
clear. In the case of Compton scattering, the am-
plitude f,(v) can'be quite easily found from unpolar-
ized total cross-section data through the use of the
usual dispersion relation.” Our result does pro-
vide a method of determining f,(v) from polarized
differential cross-section data. One could also
find f,(v) from conventional dispersion relations
using measurements of polarized total cross sec~
tions. Either the total or the differential cross-
section experiments needed to find f,(v) will re-
quire both a polarized photon beam and a polarized
target, although in neither case are final-state
polarization measurements needed. We suspect
that the total cross-section measurement will be
simpler; consequently, our result will probably
only serve as a check on the usual dispersion re-
lation calculation of f,(v). Since in our general dis-
cussion we have restricted ourselves to amplitudes
satisfying positivity, a total cross-section mea-
surement coupled with a dispersion relation will
always compete with our method for determining
an amplitude.

In summary, we have reviewed the problem of
constructing an amplitude given its modulus on its
cuts. Then we have studied what results from the
additional assumptions of positivity and a definite
number of subtractions in the usual dispersion
relations. In the case of two subtractions we have
explicitly demonstrated that the amplitude is
uniquely determined from its modulus on the cuts
and knowledge of the subtraction constants. We
point out that in the case of Compton scattering
these subtraction constants are determined by the
static electromagnetic properties of the target.
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